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A finite-amplitude long-wave equation is derived to describe the effect of weak
current shear on internal waves in a uniformly stratified fluid. This effect is man-
ifested through the introduction of a nonlinear term into the amplitude evolution
equation, representing a projection of the shear from physical space to amplitude
space. For steadily propagating waves the evolution equation reduces to the steady
version of the generalized Korteweg–de Vries equation. An analysis of this equa-
tion is presented for a wide range of possible shear profiles. The type of waves
that occur is found to depend on the number and position of the inflection points
of the representation of the shear profile in amplitude space. Up to three possible
inflection points for this function are considered, resulting in solitary waves and
kinks (dispersionless bores) which can have up to three characteristic lengthscales.
The stability of these waves is generally found to decrease as the complexity of the
waves increases. These solutions suggest that kinks and solitary waves with multiple
lengthscales are only possible for shear profiles (in physical space) with a turning
point, while instability is only possible if the shear profile has an inflection point.
The unsteady evolution of a periodic initial condition is considered and again the
solution is found to depend on the inflection points of the amplitude representa-
tion of the shear profile. Two characteristic types of solution occur, the first where
the initial condition evolves into a train of rank-ordered solitary waves, analogous
to those generated in the framework of the Korteweg–de Vries equation, and the
second where two or more kinks connect regions of constant amplitude. The un-
steady solutions demonstrate that finite-amplitude effects can act to halt the critical
collapse of solitary waves which occurs in the context of the generalized Korteweg–
de Vries equation. The two types of solution are then used to qualititatively relate
previously reported observations of shock formation on the internal tide propa-
gating onto the Australian North West Shelf to the observed background current
shear.

1. Introduction
While the dynamics of nonlinear internal solitary waves in the ocean are deter-

mined by a range of effects, many field observations indicate that vertical shear of
the horizontal current is often one of the most significant. An important generation
mechanism for nonlinear internal waves is the interaction of barotropic tides with
topography. Here large-amplitude waves and shock-like structures with wavelengths
of order hundreds of metres have been observed propagating on internal tides with
wavelengths of order tens of kilometres. Observations of nonlinear internal waves due
to this mechanism have been documented by, among others, Halpern (1971), Apel
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et al. (1975), Farmer & Smith (1978), Haury, Briscoe & Orr (1979) and Holloway
(1984, 1987, 1994). These show that in many circumstances current shear is suffi-
ciently strong that it cannot be ignored, including circumstances where the shear is
significantly smaller than the velocities associated with the internal waves. Farmer
(1978) documents observations of nonlinear internal waves in a lake generated by a
similar mechanism of the interaction of a storm surge with a sill. These also show the
presence of significant background shear.

It was first shown by Benney (1966) that the propagation of long, weakly nonlinear
internal waves is governed by the Korteweg–de Vries (KdV) equation:

At + cAx + rAAx + sAxxx = 0, (1)

where c is the linear long-wave speed, and r and s are coefficients dependent on
the ambient stratification of the fluid. The derivation assumes that the leading-order
balance is between the first two terms, and that nonlinearity and dispersion balance at
the next order. Therefore, if a wave has characteristic amplitude a, the characteristic
wavelength will be λ = O((s/ra)1/2). Hence, if ra � 1 nonlinearity and dispersion
will be weak effects. Motivated by the observations of internal wave generation
in Massachusetts Bay by Halpern (1971), Lee & Beardsley (1974) used Benney’s
formulation to examine the effects of current shear, so that in the KdV equation (1)
the parameters r and s become dependent on the shear as well as the stratification.
This was further extended by Maslowe & Redekopp (1980), Grimshaw (1981), Tung,
Ko & Chang (1981) and Gear & Grimshaw (1983) resulting in various modifications
to (1). The derivations of Maslowe & Redekopp (1980) and Tung et al. (1981)
demonstrated that not only is the evolution of regular internal wave modes governed
by (1), the evolution of singular internal wave modes having a nonlinear-dominated
critical layer where the phase speed of the internal wave equals that of the current
shear are also governed by this equation. As noted by Tung et al. (1981) in this weakly
nonlinear limit for regular modes and singular modes with nonlinear critical layers
the effect of shear is purely kinematic, i.e. the shear only modifies the wave form and
wave speed and there is no exchange of energy and momentum between the waves
and the shear. The behaviour of the phase speed c and the coefficients r and s for
various shear and stratification combinations is considered by Maslowe & Redekopp
(1980), Tung et al. (1981), Gear & Grimshaw (1983), Smyth & Holloway (1988) and
Holloway et al. (1997).

The customary ordering for weakly nonlinear waves is that r = O(1) and a � 1.
But if r ≈ 0 the derivation of the KdV equation needs to be continued to a
higher order of nonlinearity, and typically a modified KdV (mKdV) equation is
obtained which contains a cubic nonlinear term. However, for a uniformly strat-
ified Boussinesq fluid and no current shear this kind of nonlinearity vanishes to
all orders. In this circumstance it is possible to remove the hypothesis of weak
nonlinearity, and instead derive an evolution equation for finite-amplitude waves.
Indeed, for the steady flow of a uniformly stratified Boussinesq fluid the fully non-
linear equations become linear (Dubreil-Jacotin 1937; Long 1953), and can thus be
exploited to obtain exact analytical solutions. More generally, for a steady non-
Boussinesq fluid this situation occurs when the upstream potential energy and kinetic
energy are constant with depth. Benney & Ko (1978) studied the steady propa-
gation of internal waves in a stratified fluid contained between rigid boundaries
using the Dubreil-Jacotin equation. They made the long-wave approximation and
showed that analytical solutions for exponential and linear stratifications could be
obtained when the Boussinesq parameter is sufficiently small. This was extended
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by Grimshaw & Yi (1991), who considered the resonant forcing of waves by the
uniform flow of a stratified fluid past topography. Their formulation allowed for
slow temporal variations, weak perturbations from uniform stratification, a small
Boussinesq parameter and the presence of a free upper boundary. The amplitude
of the internal wave was shown to satisfy an integro-differential evolution equa-
tion, which is highly nonlinear and, in general, must be solved numerically. This
type of evolution equation is referred to as finite-amplitude long-wave (FALW)
equation.

The derivation of FALW equations is not limited to stratified fluids, although in
each case when FALW equations can be derived the circumstances are limited to
anomalous, but important, special cases. For example, Benney (1979) considered the
propagation of steady, barotropic Rossby waves on a weakly sheared zonal flow. This
was extended by Warn (1983) to waves with temporal variations, and by Grimshaw &
Yi (1993a) to the forcing of Rossby waves by topography. Other examples have been
considered by Grimshaw & Yi (1990) for the propagation of barotropic coastally
trapped waves and Grimshaw & Yi (1993b) for the propagation of inertial waves in
a rotating cylinder.

Holloway (1984, 1987) documented the formation of internal hydraulic jumps and
undular bores in the presence of current shear as the semidiurnal tide propagated
onto the Australian North West Shelf, where the magnitude of the shear is small
compared to the velocities associated with the internal tide. This was analysed by
Smyth & Holloway (1988) using the second-order theory for nonlinear waves of Gear
& Grimshaw (1983). They concluded that the steepening of the internal tide was
strongly influenced by the background shear flow. Two shocks (i.e. internal hydraulic
jumps) were reported as the tide propagated up the shelf, one forward breaking
and the second rearward breaking. The first of these was trailed by a number of
large-amplitude solitary waves. Smyth & Holloway (1988) were able to explain the
presence of the first shock and argued that this would form into an undular bore.
However, only a qualitative explanation of why the second shock may have formed
could be given. A possible explanation for this inability to fully explain the second
shock is found by considering the amplitudes of the waves, which were O(40 m) in
water of depth O(120 m), so that the waves were certainly finite-amplitude in nature.
Since the measurements of Holloway (1987) show that the background buoyancy
frequency is approximately constant, while the magnitude of the background shear is
relatively small, we suggest that features of this flow may be explained using a FALW
theory.

Although FALW equations for stratified fluids are of limited application, they
do allow a semi-analytical investigation of finite-amplitude effects. Here we use
FALW equations to investigate the effect of shear on internal waves, where, due
to the limitations of the theory, this shear must be weak in comparison with the
velocities associated with the wave. The purpose of this study is, first, to gain
a basic understanding of the effect of shear on finite-amplitude internal waves,
and secondly, to attempt to explain the observations of internal waves reported
by Holloway (1984, 1987). The structure of the paper is as follows. In § 2 the
evolution equation describing the effect of weak shear on finite-amplitude internal
waves is derived. In § 3 the structure and stablity of steady solutions of this equa-
tion are discussed, while in § 4 the evolution of periodic waves for various basic
state parameters is investigated. These solutions are discussed in relation to the
field observations of Holloway (1984, 1987) in § 5. The results are summarized in
§ 6.
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2. Derivation of the evolution equation
We consider, following Grimshaw & Yi (1991), the inviscid, non-diffusive, two-

dimensional propagation of long, finite-amplitude internal waves in a stratified fluid
in a channel of undisturbed, constant depth h. Let the waves be characterized by a
lengthscale L such that L� h. Thus we can define the small parameter

ε =
h2

L2
� 1. (2)

A Cartesian coordinate system (x∗, z∗) = h(ε−1/2x, z) is introduced, where x∗ is the
horizontal coordinate along the duct and z∗ is the vertical coordinate, increasing from
zero at the base of the channel. The density is ρ0ρ(z− ζ) where ζ is the dimensionless
vertical particle displacement. The Boussinesq parameter, which measures the strength
of the density stratification, is defined as

β = ρ(0)− ρ(1). (3)

The reduced gravity is then g′ = βg, where g is the magnitude of acceleration
due to gravity. The fluid is assumed to be uniformly stratified, or close to uniform
stratification, thus the normalized buoyancy frequency, N, is

N2(z − ζ) = − 1

βρ

dρ

dz
= 1 + O(β). (4)

The time variable is t∗ = (h/g′ε)1/2t, while the fluid velocities are (u∗, w∗) = (g′h)1/2(u,
ε1/2w). Further, it is assumed that the waves are of finite amplitude and the un-
perturbed fluid is weakly sheared, i.e. the imposed shear and its vertical derivative
have magnitude O(ε). This latter condition effectively controls the magnitude of ε.
Therefore, we write the velocities in terms of a perturbation streamfunction, ψ, and a
mean flow, where

(u, w) = (ψz + εū(z),−ψx), (5)

and the subscripts denote partial differentation with respect to the appropriate vari-
able. The perturbation vorticity, −q, is then

q = ψzz + εψxx. (6)

Finally, it is assumed here that β � ε, and therefore, to the order considered we
can set β = 0. Consequently, in this Boussinesq limit the dynamic upper boundary
condition reduces to the rigid lid boundary condition. The following derivation can
also be undertaken for small but finite β of O(ε), in which case extra nonlinear terms
are added to the final evolution equation. These Boussinesq terms are identical to
those for the equivalent derivation for an unsheared flow in Grimshaw & Yi (1991).
We shall give only a brief outline of the derivation of the evolution equation here,
as it is analogous to the Boussinesq case with zero background shear considered by
Grimshaw & Yi (1991)

The long, finite-amplitude, unimodal waves propagate with a phase speed c and
the changes in this frame of reference moving with the waves occur over a slow
lengthscale O(εx). Therefore, x and t are replaced by a phase and long space variable,
defined as

θ =
x

c
− t, (7)

χ = εx, (8)
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while a streamfunction based coordinate is defined as

ξ = z − ψ

c
. (9)

Thus lines of constant ξ correspond to leading order to streamlines. The vorticity and
density equations can now be written as

J

(
q +

ψ

c2
, ξ

)
+

1

c

(
ζ − ψ

c

)
θ

+ ε

(
−I(ψzz, ψ)− ūψzzθ

c
+
ūzzψθ

c
+ ζχ

)
= O(ε2), (10a)

J

(
ζ − ψ

c
, ξ

)
− ε

(
I(ζ, ψ) + ψχ +

ūζθ

c

)
= O(ε2). (10b)

with

ψ = 0 on z = 0, 1. (10c)

The Jacobians in the above equations have the definition

J(a, b) ≡ aθbz − azbθ, (11)

I(a, b) ≡ aχbz − azbχ (12)

and now

q = ψzz +
εψθθ

c2
+ O(ε2). (13)

These equations are transferred from (θ, z, χ)-space to (θ, ξ, χ)-space, which is valid so
long as the transformation is one-to-one and ξz 6= 0. Therefore, the streamfunction
must satisfy |ψz| < c; if |ψz| = c a stagnation point (in the reference frame of the
wave) will occur in the fluid, and subsequent to that overturning may occur. Then

J(a, ξ) = ξzaθ. (14)

Integrating the equations of conservation of vorticity, (10a), and density, (10b), we
can show that

ψzz +
ψ

c2
+ ε

(ψθθ
c2
− G

)
= O(ε2), (15a)

ζ − ψ

c
− ε

∫ θ

∞
1

ξ′z

(
ψ′χ +

ū′ζ ′θ
c

+ I(ζ ′, ψ′)
)

dθ′ = O(ε2), (15b)

where

G =

∫ θ

∞

[
1

ξ′z

(
−ζ ′χ +

ū′ψ′zzθ
c
− ū′zzψ′θ

c
+ I(ψ′zz, ψ

′)
)
− 1

c(ξ′z)2

(
ψ′χ +

ū′ζ ′θ
c

+ I(ζ ′, ψ′)
)

− ξ′θ
cξ′z

∂

∂ξ

∫ θ′

∞
1

ξ′′z

(
ψ′′χ +

ū′′ζ ′′θ
c

+ I(ζ ′′, ψ′′)
)

dθ′′
]

dθ′. (15c)

The primes denote the first argument of the various functions, e.g. ψ′′ = ψ(θ′′, ξ, χ).
Note that integration with respect to θ occurs along lines of constant ξ, i.e. streamlines.
Here we are assuming that ψ, ζ → 0 as θ → ∞, since the linear spectrum indicates
that there can be no waves ahead of the solitary wave. However, there will in general,
be a trailing shelf of O(ε) which carries O(1) mass (see Prasad & Akylas 1997).
Fortunately, the details of this trailing shelf do not affect the evolution at leading
order.
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We introduce asymptotic solutions for ψ and ζ of the form

ψ = ψ(0) + εψ(1) + O(ε2). (16)

At zeroth order

ψ(0) = c2A(θ, χ)φ(z), ζ(0) =
ψ(0)

c
, (17a,b)

where

c =
1

nπ
, φ = sin nπz, (17c,d )

and n is a non-zero positive integer. Hence, to leading order z(ξ, A) is the solution of
the implicit equation

ξ = z − A

nπ
sin nπz, (18)

and the condition |ψz| < c implies the amplitude must satisfy

|A| < 1, (19)

to prevent overturning. If |A| > 1, then it may be possible to construct a solitary wave
solution with a vortex core, similar to that found by Derzho & Grimshaw (1997) for
the case when ū(z) ≡ 0, but the O(β) terms are retained.

At first order the compatability condition for the non-homogeneous boundary-value
problem for ψ(1) requires that

1
2
Aθθ −

∫ 1

0

G(0)φzξ dξ = 0, (20a)

where

G(0) =

∫ θ

∞

[
− φ′

cξ′z
(c2A′χ + A′θ(ū

′ + c2ū′zz))− φ′

c(ξ′z)2
(c2A′χ + ū′A′θ)

+
A′θφ′

ξ′z

∂

∂ξ

∫ θ′

∞
φ′′

ξ′′z
(c2A′′χ + ū′′A′′θ) dθ′′

]
dθ′. (20b)

It can then be shown that A satisfies the integro-differential equation

2

c

∫ θ

∞
Kn(A,A

′)A′χ dθ′ + g(A) + Aθθ = 0, (21a)

where

Kn(A,A
′) =

∫ 1

0

∂z

∂A

[
∂z′

∂A′

(
1 +

∂z′

∂ξ

)
− (z − z′) ∂

∂ξ

(
∂z′

∂A′

)]
dξ, (21b)

g(A) = −2nπ

∫ 1

0

(
1−

(
∂z

∂ξ

)2)∂z
∂ξ

(cos nπz − A) ū(ξ) dξ. (21c)

As expected, the kernel Kn(A,A
′) is identical to that obtained by Grimshaw & Yi

(1991) for the case ū = 0 and β 6= 0. Note that as the shear is a weak effect, without
loss of generality we can allow it to be a slowly varying function of χ. This introduces
a mean vertical velocity, but as this will be O(ε2), it does not affect the present
analysis. Thus, the only consequence of this in (21) is that g(A) will also become a
slowly varying function of χ.
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If ū is constant in χ, an alternative formulation is to use a space-like phase variable
and a long time variable, which are defined respectively as

σ = x− ct, (22)

τ = εt. (23)

In this case (21) becomes

1

c2

∫ σ

∞
Kn(A,A

′)A′τ dσ′ +
c

2
g(A) +

c3

2
Aσσ = 0. (24)

In the weakly nonlinear limit, A = O(ε), it can be shown that

Kn(A,A
′) = c2 + O(ε2), (25)

therefore, (24) becomes

Aτ + 2

∫ 1

0

(1− φ2)ū dzAσ + 6c

∫ 1

0

(1− 3φ2)φzū dzAAσ +
c3

2
Aσσσ = O(ε3). (26)

This is simply the KdV equation, which, taking into account the definition of A, can
be shown to be in agreement with the KdV equations derived for weakly nonlinear
waves in a sheared environment in the limit of uniform stratification and weak shear,
e.g. see Grimshaw (1997).

The kernel in (21) can be shown to have a similarity form, dependent only on the
modal number, n, through a multiplying factor. To demonstrate this, for a wave of
mode n, where n is a positive integer, introduce the variables

(ξ̂, ẑ) = n(ξ, z), (27)

which satisfy

ξ̂ = ẑ − A

π
sin πẑ. (28)

Both ξ̂ and ẑ extend over the range [0, n−1], thus the vertical integrals must also be
evaluated over this interval. It can be shown that

Kn(A,A
′) = (nπ)2

∫ 1

0

∂ẑ

∂A

[
∂ẑ′

∂A′

(
1 +

∂ẑ′

∂ξ̂

)
− (ẑ − ẑ′) ∂

∂ξ̂

(
∂ẑ′

∂A′

)]
dξ̂,

= c2K(A,A′). (29)

Similarly the nonlinear term due to velocity shear is

g(A) = −2π

∫ 1

0

(
1−

(
∂ẑ

∂ξ̂

)2)∂ẑ
∂ξ̂

(cos πẑ − A) ūeff (ξ̂) dξ̂, (30a)

where

ūeff (ξ̂) =

n−1∑
k=0

ū

[
1

n
(−1)kξ̂ +

k

n
− 1

2n
(1− (−1)k)

]
. (30b)

Defining

χ̂ =
χ

2c
, (31)
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and subsequently dropping the accent, (21) becomes∫ θ

∞
K(A,A′)A′χ dθ′ + g(A) + Aθθ = 0. (32)

Therefore higher modes, n > 1, see an effective velocity which is simply a smoothed
form of the actual velocity. Henceforth we will confine our comments to mode 1
waves and drop the accents in (29) and (30).

The Richardson number in this flow is

Ri =
N2

u2
z

= (Aφ)−2 + O(ε). (33)

Therefore, the minimum Richardson number is

Ri ≈ A−2. (34)

If the wave reaches the critical amplitude, |A| = 1, the minimum Richardson number
is then Ri ≈ 1 and occurs equidistant between the points of overturning.

3. Steady waves
For steady waves the nonlinear integro-differential equation (32) reduces to a

second-order nonlinear ordinary differential equation. This simplification allows us to
efficiently consider the effect of a wide class of shears. Therefore assume that steady
solutions of (32) exist of the form

A = A(θ −Uχ), (35)

where U is a constant, and consequently Aχ = −UAθ . Then, as∫ θ

∞
K(A,A′)A′θ′ dθ

′ = A, (36)

equation (32) becomes

−UA+ g(A) + Aθθ = 0. (37)

In deriving (32) it has been assumed that far upstream A = 0; however if the
amplitude is constant but non-zero upstream, A = A0 say, then it is obvious (37)
should have a correction to the right-hand side. In this case

−UA+ g(A) + Aθθ = −UA0 + g(A0). (38)

Now, following Warn (1983) a generalized dispersion relation for solitary wave
solutions can be derived. The nonlinear function can be written as

g(A)− g(A0) = (A− A0)g
′(A0) + αf(A,A0), (39)

where f = O((A−A0)
2) as A→ A0 and α can always be chosen to be strictly positive.

For a solitary wave to exist, A→ A0 as θ → ±∞ and hence U > g′(A0). Introducing

V = α−1(U − g′(A0)), y = (αV )1/2θ, (40a,b)

equation (39) becomes

Ayy = A− A0 − V−1f(A,A0). (41)
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Multiplying by Ay and integrating once gives

A2
y = (A− A0)

2 − 2V−1

∫ A

A0

f(A′, A0) dA′. (42)

For a solitary wave with amplitude a at its extrema the dispersion relation is therefore

V (a, A0) =
2

(a− A0)2

∫ a

A0

f(A′, A0) dA′. (43)

The velocity of the steady waves is then

U =
2

(a− A0)2

∫ a

A0

(g(A′)− g(A0)) dA′. (44)

Since α > 0 solitary waves can only exist for

V > 0, (45)

and for each solitary wave

V (A,A0) 6 V where 0 6 sgn (a− A0)(A− A0) 6 |a− A0|. (46)

As the wave must satisfy the condition (19), solitary waves can only occur in the
range

−1 < a,A0 < 1. (47)

Using these three conditions the function V (a, A0) can be plotted for each g(A) to
determine the types of solitary waves that are possible and the regions in which these
occur. The forms of shear that need be considered can be reduced by noting that
g(A) is invariant under the transform

z → 1− z, A→ −A. (48)

Thus if the shear is reflected in the line z = 1
2

the same solitary waves occur, but of
opposite amplitude.

The stability of these solitary waves can be determined using the criteria derived
by Pelinovsky & Grimshaw (1997). Defining the integral quantity

P ∗ =

∫ ∞
−∞

(A− A0)
2 dθ, (49)

they showed that solitary wave solutions of (32) are only stable when

dP ∗

dU
> 0. (50)

Strictly this result was obtained for the case A0 = 0, but we will use the more general
form here. Using (42) and (43), it can be shown that

1

2
α1/2P ∗ =

∫ a

A0

(A− A0) dA

(V − V (A,A0))1/2
= P . (51)

Then the stability condition (50) is equivalent to

dP

dV
> 0. (52)

This stability result is uniformly valid for K(A,A′) ≡ 1, i.e. when solutions of (38) are
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steady solutions of the generalized KdV (gKdV) equation

Aχ + gAAθ + Aθθθ = 0. (53)

For a review of solitary wave instability in this context see Pelinovsky & Grimshaw
(1996).

As an example, consider the stability of solitary waves for the nonlinearity

f = fk(A− A0)
k, (54)

where k is a positive integer greater than unity. For k > 5 and odd Pelinovsky &
Grimshaw (1997) showed that long internal solitary waves would be unstable. For
general k

V =
2fk
k + 1

(a− A0)
k−1. (55)

Thus, if k is even solitary waves can only occur if fk(a − A0) is positive, and if k is
odd solitary waves can only occur if fk is positive. Then

P = σV
5−k

2(k−1) , (56)

where σ is some positive constant. Hence, for k < 5 solitary waves are stable, for
k = 5 marginally stable and k > 5 unstable.

Next we consider the existence and stability of solitary waves when the shear is
given by a quartic function of z,

ū(z) =

4∑
k=0

akz
k. (57)

The coefficient a0 can be arbitrarily chosen, therefore let

a0 = −1

2

(
a1 +

2a2

3
+
a3

2
+

2a4

5

)
− 1

4π2
(2a2 + 3a3 + 4a4) +

3a4

2π4
, (58)

so that the coefficient of the linear term of g is zero. Then

g(A) =

5∑
k=2

gkA
k, (59a)

where

g2 = − 2

π
(2a1 + 2a2 + 3a3 + 4a4) +

56

3π3
(a3 + 2a4), (59b)

g3 =
1

2π
(2a2 + 3a3 + 4a4)− 3a4

4π3
, g4 = − 8

3π3
(a3 + 2a4), g5 =

3a4

4π3
, (59c–e)

and the dispersion relation is

V = 2

5∑
k=2

g(k)(A0)(a− A0)
k−1

(k + 1)!
, (60)

where g(k) is the kth derivative of g.
When ū(z) is just a quadratic function of z (i.e. a3 = a4 = 0), then g4 = g5 = 0

and so (41) reduces to the steady version of the mKdV equation. Its solitary wave
solutions are well known and can be shown to be always stable. Let a3 = a4 = 0 in
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(59), and define

â = a− A0, r = g2 + 3g3A0, q = g3. (61)

Then setting α = 1 the dispersion relation is

V = 2
3
râ+ 1

2
qâ2. (62)

The general solitary wave solution is (see Kakutani & Yamasaki 1978; Miles 1979)

A = A0 +
â

b+ (1− b) cosh2 y/2
, (63a)

where

b = − 3qâ

4r + 3qâ
. (63b)

If b → 1 kinks or dispersionless bores, i.e. solutions with unequal asymptotic limits
as y → ±∞, occur, where

A = A0 + 1
2
â(1± tanh y/2). (64)

The stability of both the solitary waves and the kinks is then dependent on P (A),
given by

P =
√

2

∫ â

0

A dA

(q(â2 − A2) + 4r(â− A)/3)1/2
,

=
√

2|â|
∫ 1

0

A dA

(1− A)1/2(q(1 + A) + 4r/(3â))1/2
. (65)

The form of (65) is dependent on the sign of q. For q positive first define

µ =
3qâ

4r
+

1

2
, (66)

and then the velocity can be written as

4V

ν
= 4µ2 − 1 = V̂ , where ν =

8r2

9q
. (67)

Note that since V > 0, |µ| > 1
2
. It follows that

P =

(
ν

q2

)1/2(
V̂ 1/2 + arctan V̂−1/2 − π

2
sgn µ

)
, (68)

and

dP

dV
=

2

(νq2)1/2

V̂ 1/2

1 + V̂
, (69)

which is always positive. Thus for q positive the solitary waves are always stable.
For q negative

−4V

ν
= 1− 4µ2 = V̂ , (70)

so that now |µ| 6 1
2
. Then

P =

∣∣∣∣ νq2

∣∣∣∣1/2 (−V̂ 1/2 + arctanh V̂ 1/2
)
, (71)



136 S. R. Clarke and R. H. J. Grimshaw

(a)
1.0

0.5

0

–0.5

–1.0
–1 0 1

a

V
 (

a,
0)

(b)
0.4

0.2

0

–0.2

–0.4
–1 0 1

A

1 3

Ay

Figure 1. Examples of the possible types of solitary waves when the dispersion relation V (a, 0),
(60), has g5 negative and three positive turning points. (a) An example V (a, 0) showing the regions
in which the various types of solitary waves occur. The types of solitary waves, indicated by a
number, are discussed in the text. The regions in which solitary waves cannot occur are shown in
dark shading, while the regions in which unstable solitary waves occur are shown in light shading.
(b) Examples of phase plots of solitary waves from each of the regions of (a), including the limiting
kink if it occurs.

and so

dP

dV
=

2

|νq2|1/2
V̂ 1/2

1− V̂ , (72)

which is always positive, since V̂ < 1. Thus, for q negative the solitary waves are
again always stable.

The stability of kinks is found in the limit µ→ 0. In this case P is only defined for
q negative and

lim
µ→0

dP

dV
=

2

|νq2|1/2
1

4µ2
. (73)

Thus, kinks are stable in the sense that they are the limit as µ→ 0 of stable solitary
waves.

For the general case (57), the nonlinearity in (41) is of fifth order, and four types
of curves for V (a, A0) are possible. These are dependent on the sign of the coefficient
of the leading-order term of V and the distribution of the turning points on either
side of a = A0. From these four types of curves, four types of solitary waves result.
Examples of phase plots of each of these types of solitary waves are shown in figures
1 and 2 for two of the possible types of curves for V (a, 0). The examples shown have
A0 = 0, for non-zero A0 the same types of curves and solitary waves result, only the
range of amplitudes over which these occur changes.

Figure 1 shows an example where type 1 and type 3 solitary waves and kinks are
possible, and where regions of unstable solitary waves occur. The type 1 waves are all
stable; however the type 3 solitary waves only stabilize as the amplitude increases. The
limiting kinks occur at local maxima of V . Type 1 solitary waves are characterized by
the behaviour that when plotted on a phase-plane, as in figure 1, the phase plots of all
the type 1 solitary waves of the same family with smaller absolute amplitude will fall
inside this curve. Thus, if a limiting kink exists the phase plots for the forward and
backward facing waves form an envelope for the phase plots of the type 1 solitary
waves. In the limit |y| → ∞ these type 1 waves are subexponential, that is, coming
inwards the waves decrease from exponential growth. The maximum growth rate of
the wave, that is, the absolute maximum of dAy/dA, occurs at ±∞ where A = 0. The
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Figure 2. As for figure 1, except g5 is positive.

solution (63) is an example of a type 1 solitary waves when |b| 6 1. For type 3 waves
to exist type 1 waves must occur at smaller absolute amplitudes. Type 3 waves are
characterized by having two different lengthscales, or equivalently, two local maxima
of their growth rate. This is more pronounced for smaller amplitudes where instability
occurs.

For g5 negative the existence conditions place a limit on the absolute amplitude
of possible solitary waves. When g5 is positive no such limit is imposed. In figure 2
an example of positive g5 is shown where type 1, 2 and 4 solitary waves can occur,
and a type 2 limiting kink occurs. The type 1 and 2 waves are all stable and the
type 4 waves are all unstable. In contrast to type 1 waves, the phase plot for a type
2 solitary wave of a given amplitude no longer forms an envelope for the solitary
waves of smaller absolute amplitude. The type 2 waves are superexponential in the
limit |y| → ∞, that is, the wave increases from exponential growth coming in towards
the peak. In this case the maximum growth rate occurs away from ±∞ at non-zero A.
When b 6 −1 the solution (63) is an example of a type 2 solitary wave. The limiting
kink of the type 1 solitary waves is subexponential as A→ 0. For cubic nonlinearity
this kink is also subexponential as A→ a. However, for higher-order nonlinearity this
wave can be superexponential as A → a. In this case a limiting kink for a family of
type 1 solitary waves is also, under the correct transformation, the limiting kink for
a family of type 2 solitary waves. For type 4 waves to exist type 2 waves must occur
at smaller absolute amplitudes. The behaviour of type 4 waves is similar to that of
type 3 waves, except that for small A the growth is superexponential. The two local
maxima of the growth rate of the type 4 solitary wave shown in figure 2 are clearly
apparent.

In figure 2 for large absolute values of a the quintic term in g(A) dominates, which
is known to be marginally stable. Therefore, in figure 2 for large positive a the solitary
waves are unstable such that dP/dV → 0−, while for large negative a the solitary
waves are stable such that dP/dV → 0+.

As the order of the shear and nonlinearity increases more types of solitary waves
and kinks are possible; however as these solitary waves are dominated by higher-
order nonlinearity, they will generally be unstable. Kinks though, where they exist,
generally appear to be stable. It can be shown that a necessary condition for a type
N solitary wave or a limiting type N − 1 kink to exist is that the function g(A) must
have at least N−1 inflection points in the range [−1, 1]. Thus, a type N solitary wave
or a type N − 1 limiting kink requires at least O(N + 1) nonlinearity, or O(N) shear,
to occur.
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In figures 3–6 the regions of existence and stability of solitary waves are shown as
a function of a and A0 for four families of shear. We refer to these diagrams here as
the characteristic diagram for the shear, or nonlinearity. Since

lim
a→A0

V (a, A0) = 1
3
(a− A0)g

′′(A0), (74)

the inflection points of g are apparent on these diagrams as the points at which
V (a, A0) has a double root, that is, where the existence regions cross the line a = A0.
At these values of A0 a change in the type of the solitary wave always occurs, although
transitions can also occur at other values of A0.

In figure 3 the characteristic diagram is shown for

ū = −γ
(

2z3 − 3z2 +
28z

3π2

)
, (75)

g =
16γA4

3π3
. (76)

Since g is even, identical waves occur for positive and negative γ. Here only type 1
solitary waves occur and these are unstable in a large region of the diagram. This
contrasts with the results for the power law (54), for which instability only occurs for
k > 5. However, here instability only occurs off the line A0 = 0, which, in the context
of the gKdV equation, corresponds to a mixed nonlinear term. If the coefficient of
the linear term in (75) is decreased slightly the double inflection point of g vanishes,
while the inflection point of ū is unaffected. As the coefficient is increased further the
regions of instability gradually recede away from the point a = A0 = 0 and eventually
disappear off the diagram. Compare this with cubic nonlinearity, with g3 and g2 such
that g does not have an inflection point on [−1, 1]. In this case ū also does not have
an inflection point. The same types of waves result, but they are always stable.

If the linear coefficient in (75) is increased slightly the double inflection point of g
separates into two distinct inflection points. An example is shown in figure 4, where

ū = −γ
(

2z3 − 3z2 +

(
3

π

)2

z

)
, (77)

g =
4γA2

3π3

(
4A2 − 1

)
. (78)

Again identical types of waves occur for positive and negative γ. Type 1, 2 and 3
solitary waves occur, where the type 3 solitary waves are unstable for all possible
amplitudes and the type 1 and 2 solitary waves are unstable in large regions outside
the enclosed existence regions. The type 1 and 2 solitary waves which occur in the
enclosed existence region are all stable. Typically, solitary waves which occur in such
enclosed regions are found to be stable. Type 1 and 2 kinks now also occur on any
horizontal line, i.e. line of constant A0, where there is some finite region in which
amplitudes are possible. The kinks occur at the limit of these regions furthest from
the point a = A0. Then as A0 varies this gives a curve upon which kinks exist, referred
to here as the kink curve(s). A continuum of ‘kink pairs’ can be constructed on these
diagrams by drawing a rectangle with horizontal and vertical sides and vertices on
the line a = A0 and on the kink curve. An example is shown in figure 4. The resultant
pair of kinks are then simply forward and rearward facing forms of the same wave.
This pair takes the amplitude from A0 to some amplitude a, where an arbitrary-length
plateau can be inserted and then the rear kink returns the amplitude to A0. In figure
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Figure 3. The regimes for the existence of stable and unstable solitary waves for the shear (75) and
nonlinear function (76). (a) The shear ū(z), shown as a dotted line, and the nonlinear function g(A),
shown as a solid line, for γ = 1. (b) The solitary wave regimes shown as a function of the amplitude,
a, and the upstream level, A0, for positive γ. For negative γ the characteristic diagram is simply
rotated 180◦. The regions in which solitary waves do not exist are shown in dark shading, while
the regions in which unstable solitary waves occur are shown in light shading. Here the number 1
indicates only type 1 solitary waves occur.

4 kink pairs can join two type 1 kinks, in which case the rectangle spans only the
lower inflection point, or a type 1 and a type 2 kink, in which case the rectangle spans
both inflection points.

An example of quintic nonlinearity is shown in figure 5, where

ū = γ

(
(z(1− z))2 − 3

4π2
z(1− z)

)
, (79)

g =
3γA5

4π3
. (80)

Here, for positive γ type 1 and 2 solitary waves occur: the former are all stable and
the latter all unstable. For negative γ type 1 solitary waves and kinks occur, which
are everywhere stable except in a small region near the origin. Here kink pairs can be
constructed over the whole range of amplitudes. If the coefficient of the term z(1− z)
in (79) is decreased from − 3

4
π2 the triple inflection point at A = 0 changes to a

single inflection point. In this limit the regions of existence of solitary waves remain
unchanged; however the regions of instability recede from the point a = A0 = 0,
eventually vanishing off the diagram. This limit corresponds to the inflection points
of ū moving closer together; however the instability regions have receded off the
diagram well before the inflection points of ū coalesce. Except for the large regions
of instability in figure 5 these diagrams are very similar to the equivalent diagrams
for purely cubic nonlinearity.

If the coefficient of the term z(1 − z) in (79) is increased from − 3
4
π2 the triple
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Figure 4. As for figure 3, except for the shear (77) and nonlinear function (78). Now more than
one type of solitary wave can occur; the regions on the characteristic diagram where each type of
solitary wave occurs is denoted by the appropriate number. The boundaries between the various
regions are shown by a dashed-dotted line. Kinks can now also occur, an example of a kink pair is
shown as a dashed line about the lower inflection point.

inflection point of g separates into three distinct inflection points. An example of this
is shown in figure 6, where

ū = γ(z(1− z))2, (81)

g =
3γA3

4π3
(A2 − 1). (82)

For positive and negative γ enclosed regions of type 1 and 2 solitary waves with
limiting kinks occur which are completely stable. Type 1, 2, 3 and 4 solitary waves
occur outside these regions for positive γ, where the type 3 and 4 solitary waves are
completely unstable and the type 2 waves are only partially stable. Note that the type
3 regions, which are adjacent to the type 4 regions, are too small to show on the
diagram. For negative γ type 1 and 3 solitary waves occur in the regions outside the
enclosed existence regions. These regions all have limiting kinks, and thus are at least
partially stable. The type 1 regions are almost completely stable. Kink pairs can be
constructed for positive and negative γ, encompassing up to three inflection points.
For positive γ all the kink pairs encompass the central inflection point. The kink
pairs which encompass three inflection points join two type 2 kinks. For negative γ
the kink pair encompassing three inflection points joins two type 1 kinks or two type
3 kinks.

For polynomial shear of higher order g can be evaluated using symbolic algebra
packages; however for general shear profiles numerical integration must be used. In
general though, a bound on g can be obtained and in two special cases approximate
expressions for g can be found.
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Figure 5. As for figures 3 and 4, except for the shear (79) and nonlinear function (80). (b) The
characteristic diagram for positive γ, and (c) for negative γ. For positive γ the line of marginal
stability is also the boundary between the type 1 and 2 solitary wave regions.

Integration by parts can be used to show

g(A) = πA(ū(0) + ū(1))− πA
∫ 1

0

Fξū
′(ξ) dξ, (83a)

where

F = − 1

2π2
cos 2πz + (2z − 1)ξ − z2 − 2A

π2
cos πz. (83b)

The linear term in g can be ignored as this can be incorporated in the linear
velocity of the wave; consequently it can be assumed that ū(0) = −ū(1). Defining
|ūz|max = max(|ūz|), then∣∣∣∣A ∫ 1

0

Fξū
′(ξ) dξ

∣∣∣∣ 6 |ūz|max|A(F(1)− F(0))| = |ūz|max4A
2, (84)
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Figure 6. As for figure 5, except for the shear (81) and nonlinear function (82). For negative γ
three different types of kink pairs can occur, examples of each of these are shown.

and therefore

|g|max 6
4

π
|ūz|max. (85)

Thus, as noted in § 2, the perturbation expansion requires that |ūz| 6 O(1). The shear,
and consequently g, should be normalized by |ūz|max, which is equivalent, in terms
of the original variables, to choosing the perturbation parameter ε = |ūz|max. The
lengthscales of the steady waves are then

λ ∼ (|g|max)
−1/2. (86)

When the shear is either a narrow jet or mixing layer shear approximate expressions
can be obtained for g. A narrow jet can be approximated by

ū = Dδ(z − ξ0), (87)

where δ is the Dirac delta-function and 0 < ξ0 < 1. For example if

ū = sech2(z − ξ0)/L, (88)



Effect of weak shear on internal solitary waves 143

the appropriate choice of D is

D = 2L. (89)

For the singular shear, (87),

g = 2D
(
1− (1− A cos πz)−2

)( cos πz − A
1− A cos πz

)
, (90a)

where z(A) is the solution of

ξ0 = z − A

π
sin πz. (90b)

For a mixing layer shear, i.e. a narrow transition between two regions of constant but
unequal velocity, the form (83) is used for g and ū′ is approximated as

ū′ = Dδ(z − ξ0), (91)

where 0 < ξ0 < 1. When

ū = tanh (z − ξ0)/L, (92)

then D = 2. Ignoring the O(A) terms, for the shear (91),

g =
2AD

π

(
sin 2z

1− A cos z
+ 2z

)
, (93a)

where, again, z is the solution of

ξ0 = z − A

π
sin πz. (93b)

For L > O(1) the shears (88) and (92) both could be approximated by polynomial
shear and evaluated explicitly.

In all the examples of shear considered here, and many examples not shown, no
cases have been found where g has more than three inflection points. An explanation
for this is that, in terms of the number of inflection points of g, shears that result in
a large number of inflection points are localized in parameter space. Consequently a
small perturbation to the shear can result in a significant reduction in the number
of inflection points. To demonstrate this consider some special examples when the
shear profile is a polynomial in z. For each positive integer k there is a unique

family of polynomial shear, U
k
, which results in a nonlinear function g = gkA

k .
This nonlinearity has a multiple inflection point of order k − 2 at A = 0. Thus, by
perturbing the shear profile slightly, as in proceeding from figure 3 to 4 and from
figure 5 to 6, it should be possible to separate the multiple inflection point into k − 2
inflection points. Consider then the perturbed shear

ū = U
k

+ εÛ. (94)

If linear shear of the form

Û = z − 1
2

(95)

is used to perturb the shear, the resulting nonlinear function is

g = gkA
k − ε4A2

π
, (96)
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which has inflection points at

Aj =

∣∣∣∣ 8ε

πgkk(k − 1)

∣∣∣∣ 1
k−2

exp
iπ

k − 2
( 1

2
(1− sgn εgk) + 2j), j = 1, . . . , k − 2. (97)

The number of real inflection points is then

N = 1 + 1
2

(
sgn εgk + (−1)k

)
, (98)

which results in a maximum of two inflection points for k even and εgk positive. For
the perturbation

Û = z(1− z), (99)

the perturbed nonlinear function is

g = gkA
k − εA3

π
. (100)

This has inflection points at A = 0 and at

Aj =

∣∣∣∣ 6ε

πgkk(k − 1)

∣∣∣∣ 1
k−3

exp
iπ

k − 3
( 1

2
(1− sgn εgk) + 2j), j = 1, . . . , k − 3. (101)

The number of real inflection points is

N = 2 + 1
2

(
sgn εgk − (−1)k

)
, (102)

and the maximum number of inflection points is three for k odd and εgk positive. It
would be expected that more general shear profiles which result in a large number
of separate inflection points are similarly unstable to perturbations. Consequently, it
would appear to be sufficient to only consider here shear profiles which result in three
or less inflection points. This encompasses all but a very small fraction of the cases
that can occur.

All types of shear profiles support solitary waves to some degree; however only
those for which the function g has an inflection point will support kinks. From the
examples of shear profiles considered here it appears that a necessary condition for
this to occur is that the shear has a turning point. These examples also suggest that a
necessary condition for the instability of solitary waves is that the shear must have an
inflection point. For example, for the shear profiles sinπz and exp−(z/L) the existence
and stability diagrams have no regions of unstable solitary waves. This condition,
however, only isolates the types of shear which cannot have unstable solitary waves,
as many types of shear with inflection points also do not have regions of instability.
One such example is the mixing layer shear profile considered previously.

4. Evolution of periodic waves
If g ≡ 0 an exact solution of (32) is any periodic wave. As noted in § 2, since

the sheared current is a weak effect g can be allowed to vary with χ. Therefore, an
obvious and practical problem to consider is the evolution of a periodic wave in time,
such as an internal tide, propagating from a region of no shear into a region of weak
shear.

For T -periodic waves (32) should be modified to have a term depending on χ on
the right-hand side; however this can be neglected if it is first differentiated with
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respect to θ, giving the Volterra integral equation of the second kind:

K(A,A)Aχ + Aθ

∫ θ

T

KA(A,A′)A′χ dθ′ + gAAθ + Aθθθ = 0. (103)

This is to be solved with the initial condition

A(θ, 0) = α sin
2πθ

T
. (104)

To model this problem correctly, the function g should vary slowly from zero to an
asymptotic value; however in practice suddenly allowing g to attain a steady-state
value has little effect on the asymptotic results. The period of the wave can be chosen
arbitrarily as (103) is invariant under the transformation

(θ, T )→ ν(θ, T ), χ→ ν3χ, g → ν−2g. (105)

Therefore changing the period is effectively the same as changing the strength of the
shear.

Rather than considering specific shear profiles we simply consider here the function
(59) for a range of the parameters G = (g2, g3, g4, g5). This has at most three inflection
points at A = A1,2,3 and can have regions of unstable solitary waves if either g4

or g5 are non-zero. As was outlined at the conclusion of the previous section it is
anticipated that only a very small number of shear profiles will have more than three
inflection points.

Thus there are five free parameters for this problem: the four components of G and
α, which is too large a parameter space to investigate. First, we can limit α to the single
value α = 0.3. The exact choice of α is arbitrary; however it must be sufficiently large
for nonlinear effects to be significant and sufficiently less than 1 to prevent overturning
occurring rapidly. For α � 1, in general the FALW equation (103) will reduce to
the KdV or mKdV equation and as there is no mechanism here to cause waves to
grow resonantly, weakly nonlinear waves will remain weakly nonlinear. Resonant
growth of weakly nonlinear waves can occur, however, in the special case where
both the quadratic and cubic coefficients of g are exactly zero. For values of α > 0.3
overturning will occur more often, and where it already occurs, it will occur more
rapidly. Secondly, only the relative values of the components of G need be considered,
rather than the total magnitude. The transformation (105) and § 3 demonstrate that
increasing the magnitude of g will shorten the lengthscale of the resultant waves and
the timescales over which these evolve. In the unsteady problem it would therefore
be expected that increasing the magnitude of g will result in more and shorter waves
evolving from the initial condition. A consequence of this is that overturning will
occur more often. Conversely, decreasing the magnitude of g will result in longer and
fewer waves. But since the relative values of the components of G still presents a
considerable parameter space, a more efficient approach is suggested by the results
of § 3, which show that the types of steady waves are determined by the number and
position of the inflection points of g. Therefore, as any quasi-steady waves that evolve
must be closely related to the steady waves discussed in § 3, it would be expected
that the evolution of a periodic initial condition is to a large extent determined by
the value of α relative to the inflection points of g. This forms the rationale for the
examples and analysis which follow. The nonlinearities considered here together with
the corresponding first mode velocity shear are summarized in table 1.

In considering unsteady solutions of (103) one aspect of particular interest is the
effect of the nonlinear kernel K(A,A′). One effect that can be deduced is that, for a
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Figure g Ai ū

7 8A2 — −2πz

8 8A3 0 8πz(z − 1)

9 −8A3 0 −8πz(z − 1)

10 8A3 + 4A2 −0.17 πz(8z − 9)

11 −8A3 + 4A2 0.17 −πz(8z − 7)

12 8A4 0, 0 3
2
π3z2(−2z + 3)− 14πz

13 8A4 − 3A2 −0.25, 0.25 3
2
π3z2(−2z + 3)− 53

4
πz

14 8A5 0, 0, 0 32
3
π3(z(z − 1))2 + 8πz(z − 1)

15 −8A5 + 2A3 −0.27, 0, 0.27 − 32
3
π3(z(z − 1))2 − 6πz(z − 1)

Table 1. A summary of the nonlinear functions g(A) for the unsteady simulations shown in figures
7–15. Ai are the inflection points of g and ū(z) are the corresponding velocity shears.

symmetric periodic initial condition such as (104) and when g is an odd function of
A, the integral term introduces a symmetry breaking mechanism. To investigate this
and other effects it is useful to compare the solutions with those of the equivalent
gKdV equation, (53), which corresponds to K(A,A′) ≡ 1. As noted in § 3, not only
are the solitary wave solutions of this equation identical, but they also have the same
stability characteristics. Solutions of the gKdV equation have the integral invariant

M(χ) =

∫ T

0

A dθ, (106)

which to the order considered here corresponds to conservation of mass. This quantity
is referred to here as the wave mass. The mean level of the solution, Am = M/T , is
obviously also an invariant. However, these quantities are not invariants of unsteady
solutions of (103), and so the evolution of either provides one useful means of
comparison with solutions of the gKdV equation. As a consequence of the invariance
of the mass, as shown by Prasad & Akylas (1997), shelves are generated which in
the forced problem transport mass downstream from the topographic forcing. In the
context of the unforced periodic problem this in effect corresponds to a wave-mean
flow interaction, where the perturbation to the mean flow is O(Am).

In all the solutions presented here (103) is solved numerically using a scheme similar
to that proposed by Yi & Warn (1987). The particular implementation here uses
Fourier spectral methods to calculate the derivatives, a fourth-order integral equation
solver and fourth-order Runge–Kutta timestepping. The functions 1/K(A,A) and
KA(A,A′)/K(A,A) are calculated a priori on a uniform grid and linearly interpolated
when needed. Plots of the functions K(A,A) and KA(A,A′)/K(A,A) are shown in
Rottman, Broutman & Grimshaw (1996).

4.1. Zero inflection points

In figure 7 an example is shown of purely quadratic nonlinearity. Qualitatively, the
solution is very similar to that of the KdV equation with a periodic initial condition.
The wave steepens near the crest and then the shock evolves into a fan of rank-ordered
solitary waves. Initially the level these waves propagate upon decreases downstream
from the leading wave and the shock is necessary to restore the level to its maximum.
Asymptotically the solitary waves propagate on an almost constant level and at longer
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Figure 7. A solution of (103) and (104) with g = 8A2 and α = 0.3. (a) The evolution of A.
(b) The evolution of the maximum and minimum amplitudes, shown as solid lines, and the wave
mass (106), shown as a dashed line. Also shown as dotted lines are the equivalent values obtained
from the solution of (53).

times than shown, since as a slow variation in the amplitude between two unequal
values is not a solution of the steady equation, the level upon which the solitary
waves propagate will become constant and negative. The solution at these times will
simply consist of a number of interacting solitary waves. Quantitatively, there are
significant differences from the KdV solution. In the FALW solution the maximum
amplitude of the waves decreases significantly faster than for the KdV solution and
the minimum amplitude of the waves, effectively the level upon which the waves
propagate, is lower than in the KdV solution. The result of both of these effects
is that in the FALW solution the speed of the individual waves is slower. As the
waves are amplified it is apparent that the wave mass and mean level of the solution
increases, then decreases as the waves are damped. Although the change in the wave
mass clearly appears large, the maximum change in the mean level of the solution is
O(10−3).

The characteristic diagram for quadratic nonlinearity is identical to figure 3(b)
without the regions of instability. Since the component waves are slowly varying
it is useful to consider the asymptotic solution shown in figure 7 in terms of this
characteristic diagram. The solution can be represented as a number of points each
representing a solitary wave on a line of constant A0, where in this case A0 ≈ −0.2.
Then only waves with positive amplitude, i.e. a > A0, form as negative amplitude, i.e.
a < A0, waves cannot exist.
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Figure 8. As for figure 7, except that g = 8A3.

4.2. One inflection point

One limit when g has a single inflection point is α � |A1|, which is represented
by the case of purely cubic nonlinearity. Here two completely different types of
asymptotic solution occur for positive and negative cubic nonlinearity, where positive
or negative refers to the sign of g3. Examples of solutions for positive and negative
cubic nonlinearity are shown in figures 8 and 9 respectively. These are qualitatively
very similar to the solutions of the mKdV equations with a periodic initial condition
presented by Grimshaw, Pelinovsky & Talipova (1998), except there the simulations
are run to longer time allowing interactions of the waves.

In the example of positive nonlinearity shown in figure 8, the steepening occurs at
the crest and trough of the wave. Each of these events evolves into a fan of solitary
waves which asymptotically propagate on a constant mean level Am = O(10−3), where
the decrease in the mean level of the solution is due the symmetry breaking effect of
the nonlinear kernel. This also results in the absolute values of the maximum and
minimum amplitudes in the FALW solution being always less than the corresponding
values in the mKdV solution, with the consequent result that the individual waves
are slower. For this nonlinearity the characteristic diagram is identical to figure 5(b)
without the regions of instability. The asymptotic solution can be represented on
this diagram as a number of positive and negative waves on the line A0 = 0, as the
inflection point is the only level at which a continuous solution can exist with both
positive- and negative-amplitude waves.

For negative nonlinearity, figure 9, steepening occurs on the rear face of the crest
and trough, and instead of evolving into a train of solitary waves, the shocks on
each face evolve into kinks, or dispersionless shocks. These connect two plateaux of
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Figure 9. As for figure 7, except that g = −8A3. In (b) the solution of the gKdV equation is
almost identical, and so the comparisons are obscured.

constant, but non-zero, levels upon which solitary waves form. The levels of these
plateaux are less than the initial amplitude of the wave, which contrasts with figures
7 and 8 where the amplitude increases from its initial value. Now the solution is
indistinguishable from the mKdV solution. The characteristic diagram for this case
is identical to figure 5(c) without the small regions of instability in the vicinity of
the origiin. There are now two base levels which solitary waves propagate on, thus
the asymptotic solution can be represented on the characteristic diagram on a kink
pair centred about the inflection point. Negative-amplitude solitary waves form on
the upper level of the kink pair and positive-amplitude solitary waves form on the
lower level.

In figure 10 an example is shown when α and |A1| are of the same order of magnitude
with A1 negative. Steepening now only occurs at the crest of the wave, where initially
quadratic nonlinearity dominates. At longer times cubic nonlinearity modifies the
waveforms and causes the positive-amplitude waves to be preceeded by a longer
negative-amplitude wave. Comparison with the gKdV solution demonstrates that the
kernel limits the maximum amplitude attained in the FALW solution. Eventually the
amplitude in the gKdV solution exceeds unity, which in the context of the FALW
equation we take to indicate that overturning is incipient. However, this does not
occur in the FALW solution, but rather the amplitude slowly decreases after attaining
its maximum. This period is characterized by a decrease in the wave mass and mean
amplitude. As a result of the decrease in maximum amplitude, the relative speeds of
the waves are significantly less in the FALW solution. The characteristic diagram for
this case is similar to figure 5(b), again without the regions of instability, but with the



150 S. R. Clarke and R. H. J. Grimshaw

(a)
8

6

4

2

0

0

2
–32 –16 0 16 32

θ

χ

A

(b)
1

0

–1
–32 –16 0 16 32

χ

(c)
1

0

–1
0 2 4 6 8

χ

A

Figure 10. A solution of (103) and (104) with g = 8A3 + 4A2 and α = 0.3. (a) The evolution of A.
(b) The amplitude at χ = 8 with the level of the inflection point of g is shown as a dashed line. (c)
The evolution of the maximum and minimum amplitudes, shown as solid lines, and the wave mass,
(106), shown as a dashed line. Also shown as dotted lines are the equivalent values obtained from
the solution of (53).

whole diagram translated along the line a = A0. Now it is clear that the only level
that a continuous solution can exist with positive- and negative-amplitude waves is if
the level that solitary waves propagate on is that of the inflection point A0 = A1. This
level, which is not necessarily equal to the mean level, we refer to as the controlling
level of the solution.

For positive A1, figure 11, the effect of cubic nonlinearity is again only dominant
for large times. Initially quadratic nonlinearity causes the crest of the wave to steepen
and then cubic nonlinearity modifies the behaviour. Two dispersionless shocks evolve
from the initial shock, a large shock at the front and a smaller shock downstream
of this. Downstream of this rear shock the waves propagate on a slowly decreasing
level until the upstream shock restores the level. It is apparent from figure 11(a) that
the height of the rear shock increases with time; at large times it would be expected
that this will have the same height as the forward shock and the mean level of the
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Figure 11. As for figure 10 except g = −8A3 + 4A2 and the solution in (b) is shown at χ = 12.

lower plateau will be approximately constant. This must be the case as otherwise the
mean level would be slowly varying, which cannot be a solution of (103). The solution
will then consist of two plateaux upon which a number of interacting solitary waves
propagate. The levels of these plateaux are then equidistant from the level of the
inflection point A1, as is apparent from figure 11(b, c). The comparison with the gKdV
solution in figure 11(b), shows that although the maximum and minimum amplitudes
are almost identical, there is a significant increase in the wave mass. The characteristic
diagram for this case is identical to figure 5(c) without the regions of instability and
translated along the line a = A0. Again, consideration of the asymptotic solution in
terms of the characteristic diagram clearly demonstrates that the inflection point is
the controlling level of the solution.

Consider then the asymptotic behaviour as the inflection point of g moves out
from A = 0 to A = ±1. If the characteristic solution at A1 = 0 is one of positive and
negative solitary waves propagating on the controlling level of the inflection point,
as in figures 8 and 10, then as the inflection point moves away from the origin the
asymptotic solution becomes more asymmetric about the inflection point, with the
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Figure 12. As for figure 8 except g = 8A4. The simulation of (103) is stopped at
χ ≈ 37 due to overturning.

larger-amplitude waves facing toward −sgn (A1). Eventually only positive or negative
solitary waves propagate on the controlling level. Then as the inflection point moves
further away from the origin the asymptotic solution is no longer controlled by the
inflection point. Rather a train of rank-ordered solitary waves form propagating on
a mean level as in figure 7. This type of solution would be expected to occur for
α� |A1|. If the asymptotic solution at A1 = 0 consists of solitary waves propagating
on a kink pair, as in figures 9 and 11, then as the inflection point moves away from
the origin the length of the plateaux becomes asymmetric with the longer plateau
being closer to the origin. Before the amplitude of this longer plateau approaches
zero, the length of the shorter plateau must decrease to zero, at α ∼ |A1|. Then as the
inflection point moves further away from the origin it is no longer the controlling
level of the solution, instead rank-ordered solitary wave solutions such as those in
figure 7 form.

4.3. Two inflection points

When the absolute value of either A1 or A2 is significantly larger than α the solutions
need not be considered in detail here. When both are significantly larger the behaviour
will be similar to that shown in figure 7, while when one is significantly larger the
behaviour will be qualitatively the same as shown in figures 8–11.

Consider first the limiting case of purely quartic nonlinearity. This has a double
inflection point at the origin which introduces a region of unstable solitary waves
on the relevant characteristic diagram, figure 3(b). In the example shown in figure
12 it is the effect of this unstable region that is of particular interest, as the solitary
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Figure 13. As for figure 10 except g = 8A4 − 3A2 and here the solution in (b) is shown at χ = 24
and there are two inflection points.

waves which form have amplitudes falling in this region. In the context of the gKdV
equation this instability leads to critical collapse, or the formation of a singularity.
The gKdV simulation is halted at χ ≈ 24 as due to this instability the amplitude
exceeds unity. Initially for the FALW equation the behaviour of the solitary wave is
the same; however, as has been seen in previous cases, as the amplitude increases the
nonlinear kernel damps the growth of the solitary wave. Eventually for the leading
solitary wave this leads to its collapse into a smaller-amplitude stable solitary wave
and trailing radiation. However, the leading wave of this radiation becomes unstable
and eventually the amplitude exceeds unity, indicating that overturning may occur.
As can be seen this critical collapse and decay causes a significant variation in the
wave mass.

If either A1 or A2 is non-zero then the characteristic diagram will be of type shown
in figure 4(b). Thus if |A1| ∼ |A2| ∼ α, but the two inflection points are of opposite
sign, it would be anticipated that the periodic initial condition could evolve to one
of two asymptotic solutions. One possibility is that the upper inflection point is the
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Figure 14. As for figure 8 except g = 8A5.

controlling level of the solution, in which case a solution with positive and negative
solitary waves propagating on the level of the inflection point would be expected to
form. The other possibility is that the lower inflection point is the controlling level,
in which case the asymptotic solution will consist of a kink pair centred about the
inflection point, with solitary waves propogating on the two plateaux separating the
kinks. In figure 13 an example is shown where A1 = −A2. As is apparent a kink pair
solution centred about the lower inflection point forms and the upper inflection point
has little effect. Let A1 be the lower inflection point and A2 the upper inflection point.
Then, other simulations not shown here for which A2 < −A1 show that the kink pair
configuration still forms preferentially. Thus the kink pair configuration appears to
be considerably more stable than the configuration of positive and negative solitary
waves propagating on the level of an inflection point.

4.4. Three inflection points

Again, if any of the inflection points A1,2,3 is significantly larger than α it would be
expected that the behaviour would be similar to that described above. The examples
which follow describe two unique types of solution which can occur when there are
three inflection points.

Consider first the case of purely quintic nonlinearity, for which the characteristic
diagram is figure 6(b, c). As for cubic nonlinearity, the behaviour is dependent on the
sign of the nonlinear coefficient. For positive nonlinearity, as well as the inflection
point at A = 0 there is a large region of unstable solitary waves, which as shown
by Pelinovsky & Grimshaw (1997) includes the line A0 = 0. An example of positive
quintic nonlinearity is shown in figure 14. The asymmetry caused by the nonlinear
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Figure 15. As for figure 10 except g = 8A5 + 2A3 and here the solution in (b) is at χ = 100 and
there are three inflection points.

kernel can clearly be observed in this case. As with figure 12 in the gKdV solution the
solitary wave instability leads to the formation of a singularity; here the simulation
is stopped at χ ≈ 90 due to the amplitude exceeding unity. However, the nonlinear
kernel again halts this critical collapse causing the unstable solitary waves to decay
into radiation. It is anticipated that the largest of these waves will become unstable
and the process of amplification and decay of the waves will continue. As can be
seen in figure 14(b) the wave mass has a sudden decrease due to the decay of the
first unstable solitary wave and then increases with the decay of the second unstable
solitary wave.

In figure 15 an example is shown where A1 and A3 are of opposite sign and A2 = 0.
In this case the characteristic diagram is similar to figure 6(b), for which three levels
of kink pairs are possible. With three, unique inflection points a kink triplet solution
is possible. Here, the upper and lower levels are considerably shorter than the central
level. A representation of the solution on the characteristic diagram reveals that this
kink triplet solution is the limit of solutions such as that shown in figure 8, where the
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largest positive- and negative-amplitude solitary waves have each become a kink pair.
As the two outer inflection points move closer to the origin these kink pairs would
be expected to increase in length until the central level disappears. Then in this limit
the solution will be qualitatively similar to figure 9.

5. Comparison with observations
A general comparison of the results of the previous section can now be made with

the data from the Australian North West Shelf presented in Holloway (1984, 1987)
and Smyth & Holloway (1988). We will confine our comments to the data and analysis
presented in the latter. This shows the time series for an internal tide propagating onto
a shelf break, together with the ambient stratification and shear. These are such that
the fluid is approximately linearly stratified and the shear is weak, while the internal
tide is of finite amplitude. Indeed the waves have amplitude of O(40 m) in fluid of
depth O(120 m), which is slightly greater than the overturning amplitude for the theory
presented herein. The measurements were made at two points, at North Rankin in
fluid of depth O(120 m) and further up the shelf at Mooring 5 in fluid of depth
O(70 m). These measuring stations fall in regions of slowly varying depth, separated
by a sudden decrease in the depth of the fluid. Thus, as a first approximation it can
be assumed that in the vicinity of each of the measuring stations the depth, shear and
stratification were approximately constant. Two data sets were presented from each
of the measuring stations. Smyth & Holloway (1988) stated that from those data the
characteristic behaviour was that as the internal tide propagates up the shelf it forms
into shocks or hydraulic jumps. A summary of the shock and solitary wave formation
at both measuring stations is presented in table 2. Also shown is a calculation of the
coefficients and inflection points for the nonlinear function g(A) for this data.

Consider the data set NR/1, which has no inflection points. The characteristic
solution for the evolution of the internal tide in this case should be that the wave
steepens and forms into a train of rank-ordered solitary waves. As is apparent, this
appears to be what occurs. In the other three cases there is one positive inflection point
and the quadratic nonlinear coefficient, g2, is also positive. Thus the characteristic
asymptotic solution should be a kink pair joining two plateaux of approximately
constant level. Note that if g2 were negative the asymptotic solution should be a
train of rank-ordered solitary waves again. The evolution of the two kinks should be
governed by differing timescales. The leading kink forms from steepening governed by
quadratic nonlinearity, thus there should be a number of solitary waves immediately
downstream of the kink, whereas the evolution of the rear kink is governed by cubic
nonlinearity, and so is largely dispersionless. These general features of the solution
are in concurrence with all of the last three data sets in table 2.

6. Conclusions
The propagation of finite-amplitude long internal waves in uniform stratification

and with weak shear has been considered here. It has been shown that the inclusion
of shear introduces a nonlinear term to the finite-amplitude long-wave equation. This
nonlinear term is an amplitude representation of the physical shear profile in z-space.
Boussinesq effects have been ignored here; their inclusion would introduce a further
nonlinear term of the form shown by Grimshaw & Yi (1991). The magnitude of the
ratio of the nonlinear term due to velocity shear and the term due to Boussinesq
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Data Set g4 : g3 : g2 Ai Comments

NR/1 0.28 : −0.75 : 1 — 4 forward breaking shocks. No
rearward shocks, but some steepening
on rear face of wave. Large
amplitudes form on front shock.

NR/2 0.26 : −0.99 : 1 0.44 12 forward facing shocks and 5
rearward facing shocks. In other
cases some steepening on rear face.
A few large-amplitude waves on front shocks.

M5/1 0 : −0.81 : 1 0.41 6 forward facing shocks and 5 rearward
facing shocks. High frequency,
small amplitude waves on front shocks.

M5/2 0 : −1 : 0.45 0.15 11 forward facing shocks and 8
rearward facing shocks. A few
large-amplitude waves on front shocks.

Table 2. A summary of the observations of solitary wave and shock formation taken from
the isopycnal displacements of figure 3 of Smyth & Holloway (1988). The North Rankin (NR)
measurements were taken in water of depth 120 m and the Mooring 5 (M5) in depth 67 m. Data
Set 1 of each was taken over the interval 2 to 5 March, 1982 and Data Set 2 over the interval 28
March to 3 April, 1982. The parameters g4 : g3 : g2 were calculated using the corresponding shear
profiles from figure 2 of Smyth & Holloway (1988). A polynomial was fitted to these points and
used in (59) to calculate the normalized nonlinear coefficients, where the normalization preserves
the sign of the coefficients. These were then used to calculate the inflection point Ai. For all the
shear profiles no regions of unstable solitary waves were found.

effects is then
∆ρ

ρ
(Ri1/2)min, (107)

where Ri is the Richardson number of the undisturbed fluid. Typically ∆ρ/ρ < 10−3,
therefore the shear need not be particularly strong before it dominates Boussinesq
effects.

When the waves are steady the FALW equation reduces to the steady form of the
gKdV equation which can be conveniently analysed to determine the possible types
of solitary waves and their stability. It is found that the types of solitary waves which
occur depend upon the inflection points of the nonlinear function g(A). If g has no
inflection points only subexponential solitary waves are possible. These correspond
to solitary waves with only one characteristic lengthscale. When g has one or more
inflection points superexponential solitary waves and kinks are also possible. These
superexponential waves then can have more than one characteristic lengthscale, and
appear to only be able to occur when the shear profile has a turning point. As the
complexity of the shear or number of inflection points of g increases, the size of the
regions in which solitary waves are unstable increases. The function g and the regimes
in which each of these types of solitary waves occur have been presented for various
shear profiles. Significantly, it has been found that unstable solitary waves only occur
if the shear has an inflection point.

A theory based on the inflection points of g rather than its order is of much more
general applicability. For example, for all types of shear profiles with an exponential
behaviour in z the function g can only be obtained by numerical integration. These
integrations, which are not shown here, demonstrate that for all such shear profiles g
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appears to have no inflection points. Hence, only the first type of solitary waves are
possible and the kinematic effect of these exponential shears could be approximated
by a linear velocity shear. From the examples considered here and others not shown
it may be that for any shear the amplitude representation g will have at most three
distinct inflection points.

The evolution of a periodic initial condition has been presented for various g(A).
Two asymptotic types of solution have been found, where in general the type of
solution is again dependent on the inflection points of g and the behaviour of g
in the limit A → 0. For the first type of solution the periodic wave forms into a
shock, which then evolves into a train of rank-ordered solitary waves propagating on
a non-zero mean level. In the second type of solution an initial shock forms into two
or more kinks connecting two or more plateaux. Solitary waves propagate on these
plateaux. These two types of solutions can be used to explain the observations of
shock formation reported in Holloway (1984, 1987) and Smyth & Holloway (1988).
All the solutions suggest that when the amplitude of the waves becomes large there is
a significant transfer of mass between the waves and the mean flow. Consequently, in
this limit the effect of current shear is no longer purely kinematic. This wave–mean
flow interaction requires further research.

Recently Holloway et al. (1997) used a weakly nonlinear gKdV equation incorpo-
rating horizontal variability and bottom friction to model the internal tide data from
the Australian North West Shelf presented in Holloway (1994). They found that the
horizontal variability can cause the coefficient of the (quadratic) nonlinear term to
change sign and this plays an important part in determining the evolution of the
internal tide. The inclusion of bottom friction was also found to be significant in that
it limited the wave amplitudes. The theory presented here cannot be applied to these
data as the stratification is not uniform and almost all the datasets show large regions
of overturning. The results of Holloway et al. (1997) do however suggest possible
important extensions to the FALW equation presented here. The inclusion of bottom
friction would be especially significant in preventing overturning in many cases and
the gradual change in depth must introduce a further term to the FALW equation
and result in the modulation of the nonlinear function g(A).

This work was supported by the Australian Research Council. Sincere thanks are
due to Professor Jörg Imberger who initially supported and suggested this topic while
S. R. C. was at the Centre for Water Research, University of Western Australia.
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